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Abstract
We construct new aperiodic potentials with positive energy bound states starting
from the Lamé and the associated Lamé potentials by confining them to
the half line. The method used is the isospectral deformation discussed in
supersymmetric quantum mechanics. The new potentials have normalizable
eigenfunctions, with energies the same as certain levels of the original potentials
on the half line. These states are similar to the von Neumann–Wigner states
as they have an infinite number of zeros. The new potentials and their
eigenfunctions are obtained numerically and their plots are given.

PACS number: 03.65Ge

1. Introduction

The existence of bound states in the continuum, where square integrable states with positive
eigenvalues exist, have been studied by von Neumann and Wigner [1]. Unlike the conventional
bound states these states have an infinite number of zeros. Here, we construct such states on
the half line starting from the Lamé and the associated Lamé (AL) potentials. The method
used is the isospectral deformation through supersymmetric quantum mechanics (SUSYQM)
[2–4]. The constructed potentials are non-periodic, having eigenvalues the same as certain
levels of the above potentials.

For our purpose, we start with the well-known family of periodic potentials on the full
line namely, the Lamé and the associated Lamé potentials belonging to the class of elliptic
potentials [5, 6]. These potentials are usually expressed in terms of the Jacobi elliptic functions
sn(x,m), cn(x,m) and dn(x,m), where the parameter m is known as the elliptic modulus,
with 0 < m < 1 [7, 8].
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On the real line, the Lamé potential

V (x) = j (j + 1)m sn2(x,m), (1)

is exactly solvable (ES) for integer values of j and for a given j there are (2j + 1) band-edges.
The form of these band-edge solutions and explicit solutions for smaller values of j are given
in [6, 9–11]. The Lamé potential has been proposed as a model for quasi 1D confinement of
Bose–Einstein condensates (BEC) in a standing light wave [12].

The associated Lamé potential,

V (x) = a(a + 1)m sn2(x,m) + b(b + 1)m
cn2(x,m)

dn2(x,m)
, (2)

is exactly solvable when a = b = j with j being an integer and quasi-exactly solvable (QES)
when a �= b. For small values of a and b the band-edge solutions have been obtained for both
the ES and QES cases [6, 9–11, 13, 14]. For some QES examples only mid-band solutions
are available [15].

In this paper, we construct new aperiodic potentials using the isospectral deformation
technique discussed by Pappademos et al, in [16]. Here they construct quantum-mechanical
bound states in a continuous energy spectrum using SUSYQM where the known eigenfunctions
of the original potential are used. Application of the same technique to a periodic potential
on the half line, deforms the potential making it non-periodic with square integrable solutions
having same eigenvalues as the wavefunctions of the original potential. Earlier we used this
technique to deform the singular Scarf potential whose eigenfunctions are in terms of the
Jacobi polynomials [11, 17]. The deformed potential had one bound state and it had the same
energy as that of the band-edge wavefunction of the original potential [18].

In the following section, we give an overview of SUSYQM and briefly describe the steps
involved in isospectral deformation of a given potential and obtain the expressions for the
deformed potential and its eigenfunctions. In sections 3 and 4, we construct the corresponding
non-periodic potentials for the Lamé and the associated Lamé potentials, respectively. We
give the plots of the new potentials and their eigenfunctions obtained numerically. In the last
section, we present our conclusions.

2. Supersymmetric quantum mechanics

For a given 1D potential V (x) with eigenfunctions un(x) and eigenvalues En(n = 0, 1, 2, . . .),
we can generate a new family of potentials Ṽ (x; λ), isospectral to V (x) [2–4]. The parameter
λ is used to label the potentials in the isospectral family and takes values lying in the range
λ > 0 and λ < −1. Setting h̄ = 2m = 1, we can write the superpotential as

W(x) = −u′
0(x)

u0(x)
. (3)

The original potential V (x) can be expressed in terms of W(x) as

V (x) = W 2(x) − W ′(x). (4)

Its isospectral partner V+(x) is given by

V+(x) = W 2(x) + W ′(x). (5)

Let u(+)
n (x) denote the eigenfunctions of V+(x), (n = 1, 2, . . .). We have u(+)

n (x) = Aun(x),
where A = d/dx + W(x), (hence, A† = −d/dx + W(x)). Note that the ground state u+

0(x),
cannot be obtained in this manner, as Au0(x) = 0. Thus, V+(x) is isospectral to V (x), except
that its spectrum does not contain u

(+)
0 (x). Hence, to introduce the ground state into its spectrum
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and form a complete set of eigenstates, we need to find the most general superpotential W̃ (x),
so that

V+(x) = W̃ 2(x) + W̃ ′(x). (6)

Taking W̃ ′(x) = W(x) + φ(x) and substituting it into (6) gives the Bernoulli equation,

y ′ = 1 + 2W(x)y, (7)

after the change of variable y = 1/φ(x). The solution of the above equation is

1

y
= φ(x) = d

dx
ln(I0 + λ), (8)

where

I0 =
∫ x

−∞
u2

0(y) dy (9)

and λ is a constant of integration. Thus, the most general superpotential is

W̃ (x) = W(x) +
d

dx
ln(I0(x) + λ), (10)

using which we obtain a family of potentials Ṽ (x; λ) given by,

Ṽ (x; λ) = W̃ 2(x) − W̃ ′(x)

= V (x) − 2[ln(I0 + λ)]′′

= V (x) − 4u0(x)u′
0(x)

I0 + λ
+

2u4
0(x)

(I0 + λ)2
. (11)

The potential Ṽ (x; λ) is isospectral to the potential V (x) with the ground state [4]

ũ0(x) =
√

λ(1 + λ)u0(x)

(I0 + λ)
. (12)

Note that the above family of potentials also includes V (x) because in the limit λ →
±∞, Ṽ (x; λ) → V (x).

In standard SUSYQM, isospectral families of potentials which allow only bound states
have been constructed, and u0(x) was the ground state. Generalization of this method, where
we can use any non-singular eigenstate un(x) of arbitrary energy En instead of u0(x), led to
the construction of bound states in the continuum for spherically symmetric potentials. For
more details the reader is referred to [16] and the references therein. We merely reproduce the
statement of a theorem here.

Theorem 1. Let u0(r) and u1(r) be any two non-singular solutions of the radial Schrödinger
equation for the potential V(r) corresponding to arbitrarily selected energies E0 and E1

respectively, in the positive continuum region. Construct a new potential Ṽ (r; λ) as prescribed
by (11). Then, the two functions

ũ0(r) = u0(r)

I0 + λ
(13)

and

ũ1(r) = (E1 − E0)u1(r) + ũ0(r)Wr(u0(r), u1(r)) (14)

are solutions of the Schrödinger equation for the new potential Ṽ (r; λ), corresponding to
the same energies E0 and E1. Here Wr(u0(r), u1(r)) is the Wronskian. Due to the non-
normalizability of the state u0(r), we have λ > 0 and I0 = ∫ r

0 u2
0(y) dy.
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Note that the original potential V (r) had no integrable solutions but the new potential
has one square-integrable solution ũ0(r) with energy E0, along with non-normalizable
eigenfunctions given by (14). The creation of the bound state can be elucidated by the fact
that I0 in (9) diverges owing to the non-integrability of u0. Hence, as I0 → ∞, ũ0(r) → 0,
resulting in a square-integrable wavefunction in the continuum.

A similar deformation of the potential Ṽ (r; λ) with the non-normalizable state ũ1(r) gives
another family of potentials ˜̃V (r; λ; λ1), isospectral to both V (r) and Ṽ (r; λ), with two bound
states ˜̃u0(r) and ˜̃u1(r) in the continuous spectrum with energies E0 and E1, respectively. The
parameter λ1 is a real number with λ1 > 0.

The expressions for the new potential ˜̃V (r; λ; λ1) and the two square-integrable states
˜̃u0(r) and ˜̃u1(r) are as follows:

˜̃V (r; λ; λ1) = Ṽ (r; λ) − 2[ln(I1 + λ1)]
′′

= Ṽ (r; λ) − 4ũ1(r)ũ
′
1(r)

I1 + λ1
+

2ũ4
1(r)

(I1 + λ1)2
, (15)

˜̃u0(r) = (E0 − E1)ũ0(r) + ˜̃u1(r)Wr(ũ1(r), ũ0(r)) (16)

and

˜̃u1(r) = ũ1(r)

I1 + λ1
(17)

respectively, where

I1 =
∫ r

0
ũ2

1(y) dy (18)

and Wr(ũ1(r), ũ0(r)) is the Wronskian. Thus, we can create any number of bound states in the
continuum by successive deformations of the potential V (r) provided one knows the analytic
expressions for the eigenfunctions and eigenvalues in the continuum.

In the following section, we apply the above technique to the Lamé and the associated
Lamé potentials on the half line, with known eigenvalues and eigenfunctions. For this purpose,
owing to the non-normalizability of the solutions of the periodic potential, we work on half
line (0 < x < ∞). This allows us to exactly adopt the procedure described for spherically
symmetric potentials, to one-dimensional periodic potentials and create new potentials. We
see from the plots in the following sections that the deformed potential is aperiodic and it
converges to the original potential for large x and in the limit λ → ∞, the deformed potential
tends towards the original potential. The difference between the two potentials is more
pronounced near the origin. This deviation of the new potential from the original potential
near the origin results in the occurrence of localized states. A similar situation resulted in
the occurrence of bound states in the continuum [1]. Here the delicate interplay between the
rate at which the oscillatory potential falls off and the time taken by the various maxima of
the potential to interact was responsible for the creation of a bound state in the continuum
[19, 20].

3. The Lamé potential

The Lamé potential in (1), with j = 2 and a constant added to make the ground state energy
zero, is

V (x) = 6m sn2(x,m) − 2m − 2 + 2δ, (19)
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where δ = √
1 − m + m2. On the full line, this potential has two bands and a continuum. The

expressions for the five band-edge wavefunctions and energies are [6, 9–11]

ψ0(x) = 3m + 3 − δ − 3m sn2(x,m),

E0 = 2δ − 2m − 2; (20)

ψ1(x) = cn(x,m)dn(x,m),

E1 = m + 1; (21)

ψ2(x) = dn(x,m)sn(x,m),

E2 = 4m + 1,
(22)

ψ3(x) = cn(x,m)sn(x,m),

E3 = m + 4,
(23)

ψ4(x) = 3m + 3 − 3δ − 3m sn2(x,m),

E4 = 2δ + 2m + 2,
(24)

with ψ0(x) and ψ1(x) representing the lower and upper band-edge wavefunctions of the
first band and so on. As mentioned in the previous section, we examine only the half line
problem. It needs to be pointed out that sticking to the half line problem changes the spectral
characteristics of the above system. Only those states are allowed which vanish at the origin
[21–23]. In the present case, only (22) and (23), which represent the lower and upper band-
edge wavefunctions of the second band, satisfy the boundary condition, since sn(0,m) = 0.
Thus, on the half line, the Lamé potential with (j = 2) has only two known states namely,
ψ2(x) and ψ3(x) with energies E2 and E3.

We follow the steps described in the previous section and construct a potential which has
two bound states with energies E2 and E3. The entire procedure is done numerically and we
give the plots of the deformed potential and its bound states.

First we deform the potential given in (19), using ψ2(x) in (22), to obtain the one-
parameter potential with one bound state solution, which depends on the parameter λ. For
this purpose, we first obtain I0, whose plot is given in figure 1(a). As expected I0 turns
out to be a diverging integral. Using I0 and equations (11), (13) and (14), we obtain and
plot the deformed potential Ṽ (x; λ) and the deformed wavefunctions ψ̃2(x) and ψ̃3(x) in
figures 1(b)–(d), respectively. For comparison, the original potential and wavefunctions are
plotted in dotted line.

It is clear from figure 1(b) that the deviation of the deformed potential from the original
potential is more near the origin and it converges to the original potential for large x. From
figures 1(c) and (d) we see that ψ̃2(x) is a normalizable state and ψ̃3(x) is not normalizable.
Thus, with this deformation we have obtained a potential with only one bound state. In order
to construct a potential with two bound states, we deform Ṽ (x; λ) with ψ̃3(x) using (15)–(18).
Plots of I1,

˜̃V (x; λ; λ1),
˜̃ψ2(x) and ˜̃ψ3(x) versus x are given in figures 2(a)–(d), respectively.

We observe that compared to Ṽ (x; λ), ˜̃V (x; λ; λ1) deviates more from the original potential
near the origin.

From figures 2(c) and (d), it is clear that both ˜̃ψ2(x) and ˜̃ψ3(x) are integrable. These
states have energies E2 and E3, which are the energies of ψ2(x) and ψ3(x) respectively. In
figures 3(a) and (b), we give the plots of the deformed wavefunctions ˜̃ψ2(x) and ˜̃ψ3(x)

respectively, for two different values of λ and λ1. (Without loss of generality we have set
λ = λ1 = 1 and λ = λ1 = 10 in these figures.)
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Figure 1. Lamé potential: first deformation using ψ2(x), λ = 1. The dotted lines in each plot
represent the plots of the corresponding original functions. (a) Diverging integral I0, (b) the
deformed potential Ṽ (x; λ), (c) state ψ̃2(x), the normalizable state, (d) state ψ̃3(x), the non-
normalizable state.

4. The associated Lamé potential

For the AL potential, we have considered the following two cases.

Case (i) a = 7/2 and b = 1/2. For these values of the potential parameters, the associated
Lamé potential on the full line is QES with infinite number of bands. Of these infinite number
of bands, analytical expressions for the band-edge eigenfunctions and eigenvalues of the lowest
two bands and the continuum band-edge are known [6, 10, 11, 13, 15].

Case (ii) a = 3/2 and b = 1/2. In this case, the associated Lamé potential on the full line is
QES and the analytical solutions for a pair of mid-band states alone are known [15].

For the above two cases we obtain non-periodic potentials after deforming them in the
same way as done in the previous section. For both the cases, we provide only the plots of the
deformed potential ˜̃V (x; λ; λ1) and the two normalizable states, as the plots are very similar
to the Lamé case.

Case (i). The expression for the potential is

V = 63

4
m sn2(x,m) +

3

4
m

cn2(x,m)

dn2x(x,m)
− 2 − 29

4
m + δ9 (25)

where, δ9 = √
4 − 4m + 25m2. The known solutions are
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Figure 2. Lamé potential: second deformation using ψ̃3(x), λ = λ1 = 1. The dotted lines in
each plot represent the plots of the corresponding original functions. (a) Diverging integral I1,
(b) the doubly deformed potential ˜̃V (x; λ; λ1), (c) state ˜̃ψ2(x), normalizable state, (d) state ˜̃ψ3(x),
normalizable state.
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˜̃
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Figure 3. Comparison of the normalizable wavefunctions for different values of λ (bold line) and
λ1 (dotted line). For convenience λ = λ1. The thick line is for λ = λ1 = 1 and the dotted line is
for λ = λ1 = 10. (a) Deformed wavefunction ˜̃ψ2(x), (b) deformed wavefunction ˜̃ψ3(x).

ψ0(x) = dn3/2(x,m)(12m sn2(x,m) − 5m − 2 − δ9),

E0 = 0; (26)

ψ1(x) = cnx(x,m) dn3/2(x,m)sn(x,m),

E1 = δ9 − m + 2; (27)

ψ2(x) = dn3/2(x,m)(12m sn2(x,m) − 5m − 2 + δ9),

E2 = 2δ9;
(28)
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Figure 4. Associated Lamé potential case (i): second deformation using ψ̃3(x), with λ = λ1 = 1.
The dotted lines in each plot represent the plots of the corresponding original functions.
(a) Diverging integral I1, (b) the doubly deformed potential ˜̃V (x; λ; λ1), (c) state ˜̃ψ2(x),
normalizable state, (d) state ˜̃ψ3(x), normalizable state.

ψ3(x) = cn(x,m)dn−1/2(x,m)sn(x,m)

(1 − 2sn2(x,m)), E3 = 14 − 7m + δ9; (29)

ψ4(x) = 1 − 8sn2(x,m)cn2(x,m),

E4 = 14 − 7m + δ9.
(30)

Note that the last two states, namely ψ3(x) and ψ1(x), are degenerate with the band-gap being
zero. Considering the problem on half line implies that only the wavefunctions which satisfy
the condition ψ(0) = 0 are valid. Thus, the states ψ1(x) and ψ3(x), which alone satisfy the
boundary condition, are the solutions on the half line and hence are used to deform the above
potential.

The first deformation is performed using the state ψ1(x) and the resulting potential Ṽ (x; λ)

has one bound state ψ̃1(x) with energy E1 along with a non-normalizable state ψ̃3(x) with
energy E3.

Next the potential Ṽ (x; λ) is deformed using the non-square integrable state ψ̃3(x) so
that it can accommodate two bound states ˜̃ψ1(x) and ˜̃ψ3(x) which have energies E1 and
E3, respectively. The corresponding plots for I1,

˜̃V (x; λ; λ1),
˜̃ψ1(x) and ˜̃ψ3(x) are given in

figures 4(a)–(d).
In the above case, the potential was deformed using known solutions resulting in a new

potential with bound states having energies corresponding to certain levels of the original

8
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Figure 5. Associated Lamé potential case (ii): second deformation using ψ̃2b(x), with λ = λ1 = 1.
The dotted lines in each plot represent the plots of the corresponding original functions.
(a) Diverging integral I1, (b) the doubly deformed potential ˜̃V (x; λ; λ1), (c) state ˜̃ψ2(x),
normalizable state, (d) state ˜̃ψ3(x), normalizable state.

potential. In the next case, we see that the new deformed potential has an eigenstate which has
the energy corresponding to the eigenstate, inside a band, of the original full line potential.

Case (ii). The associated Lamé potential with a = 3/2 and b = 1/2 is

V = 15

4
m sn2(x,m) +

3

4
m

cn2(x,m)

dn2x(x,m)
. (31)

For this potential only a pair of mid-band states given below are known analytically.

ψ1a(x) = cn(x,m)(4 − m − 2sn2(x,m))

dn3/2(x,m)
,

ψ1b(x) = sn(x,m)(4 − 2sn2(x,m))

dn3/2(x,m)

(32)

with energy E1 = 1 + 9m
4 .

ψ2a(x) = cn(x,m)sn2(x,m)

dn3/2(x,m)
,

ψ2b(x) = sn(x,m)(2sn2(x,m) − 1)

dn3/2(x,m)

(33)
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with energy E2 = 9+ m
4 . From the above equations we can see that the mid-band states ψ1b(x)

and ψ2b(x) vanish at the origin. Thus the potential V in (31) has only two known solutions
on the half line. Hence, we make use of these wavefunctions to deform the potential in (31)
numerically and construct a new potential with bound states having the energies E2 and E3.
The plots of the two normalizable states along with the potential after the second deformation
and the diverging integral I1 are given in figure 5. Note that the potential in figure 5(b) is
non-singular and well behaved near the origin. In order to show the overall behaviour of
˜̃V (x; λ, ; λ1) we have refrained from showing the peak values (the maximum is approximately
at 800 in this case).

5. Conclusions

In this paper, we have shown that we can construct new non-periodic potentials starting from the
Lamé and the associated Lamé potentials on the half line by deforming them using SUSYQM.
The deformed potential has eigenfunctions with energies same as certain eigenvalues of the
original potential and in the limit λ → ∞ tends to the original potential. We point out here
that the bound states obtained after deformation are not bound states in the usual sense as they
have infinite number of zeros and are similar to the von Neumann–Wigner bound states in
continuum.

The Lamé potential, as mentioned in the introduction, has been proposed as a model for
quasi 1D confinement of Bose–Einstein condensates (BEC) in a standing light wave [12].
As possible applications of BECs for quantum computation are currently being explored, a
deformed Lamé potential which is non-periodic may be of use. Moreover, this work may have
physical relevance in the context of optical lattice induced periodic potentials in the radial
Gross–Pitaevskii equation, when nonlinearity is small [24].
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